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1 Project 1: Implementing and comparing the SCS approximation
algorithms

Introduction

The goal of the computer science discipline was, from the beginning, to provide solutions to algo-
rithmic problems. Unfortunately, a lot of important problems with applications in areas like bioin-
formatics, network design and string processing are NP-hard. Therefore, under the strongly believed
conjecture that P 6= NP , no polynomial time exact algorithms can be found for these problems. Since,
finding exact solutions to these problems is not feasible, several relaxations were proposed: either the
algorithms are allowed to run in exponential time or they may return suboptimal solutions (and run
in polynomial time).

One very important NP-hard problem is the shortest common superstring problem described next.
Since the DNA is a sequence of letters over the alphabet A, C, G, T, many problems from bioinformatics
can be represented as string problems. A classical example is the shortest common superstring (SCS)
problem, in which we are given a set of strings, and the goal is to find the shortest string that contains
all the input strings as substrings. The SCS problem has a variety of crucial applications such as
genome assembly, data compression and scheduling.

Problem definition

Shortest common superstring is subject of intensive research and approximation algorithms with
the following ratios are shown: 3 [4] , 28

9 [15] , 25
6 [6] , 250

63 [10] , 23
4 [1] , 250

69 [2] , 22
3 [3], 225

42 [5] ,
21
2 [14] [8] [13] , 211

23 [11]. There is also a natural greedy algorithm which is conjectured to have an
approximation ratio of 2: select two strings with largest overlap (breaking ties arbitrarily) and replace
them with their merge; the algorithm stops when there is only one string left and, obviously, this string
is a superstring of all strings. On the other hand, the following lower bounds are known. For arbitrary
number of input strings the problem is known to be NP-Complete [7] and hard to approximate within
1 1
332 [9] . Even for the case of binary alphabet Ott [12] presented approximation ratio lower bounds.

The specific task of the student The approximation algorithms for the SCS have been studied
from the theoretical perspective. However, so far these algorithms were not implemented and compared
on real data sets. The task of the student is to read the literature, understand these algorithms,
implement them and compare them on sets of real data.
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2 Project 2: Designing new algorithms for SCS and related problems

Introduction

The goal of the computer science discipline was, from the beginning, to provide solutions to algo-
rithmic problems. Unfortunately, a lot of important problems with applications in areas like bioin-
formatics, network design and string processing are NP-hard. Therefore, under the strongly believed
conjecture that P 6= NP , no polynomial time exact algorithms can be found for these problems. Since,
finding exact solutions to these problems is not feasible, several relaxations were proposed: either the
algorithms are allowed to run in exponential time or they may return suboptimal solutions (and run
in polynomial time).

One very important NP-hard problem is the shortest common superstring problem described next.
Since the DNA is a sequence of letters over the alphabet A, C, G, T, many problems from bioinformatics
can be represented as string problems. A classical example is the shortest common superstring (SCS)
problem, in which we are given a set of strings, and the goal is to find the shortest string that contains
all the input strings as substrings. The SCS problem has a variety of crucial applications such as
genome assembly, data compression and scheduling.

Problem definition

Shortest common superstring is subject of intensive research and approximation algorithms with
the following ratios are shown: 3 [4] , 28

9 [15] , 25
6 [6] , 250

63 [10] , 23
4 [1] , 250

69 [2] , 22
3 [3], 225

42 [5] ,
21
2 [14] [8] [13] , 211

23 [11]. There is also a natural greedy algorithm which is conjectured to have an
approximation ratio of 2: select two strings with largest overlap (breaking ties arbitrarily) and replace
them with their merge; the algorithm stops when there is only one string left and, obviously, this string
is a superstring of all strings. On the other hand, the following lower bounds are known. For arbitrary
number of input strings the problem is known to be NP-Complete [7] and hard to approximate within
1 1
332 [9] . Even for the case of binary alphabet Ott [12] presented approximation ratio lower bounds.

The specific task of the student Despite significant advances, there are still many open problems
in the literature. The task of the student is to design new algorithms for several variations of SCS.
Specific tasks will be discussed with the students who choose this topic.
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